Welcome to Micropower Devices/Systems & Nanomagnetics Group
MICROPOWER DEVICES/SYSTEMS & NANOMAGNETICS
  • About
  • Research
    • Micro Power generation
    • Power conversion for Microsystems
    • Nanostructured magnetic materials
  • Facilities
    • Sample Preparation
    • Structural Characterization Lab
    • Magnetic Characterization Lab
    • Vibration Energy Harvesting Setup
    • Tyndall Central Facility
    • Clean Room Facility
  • PUBLICATIONS
    • MEMS Vibrational Energy Harvesting
    • Power Supply on Chip
    • Materials Science
  • Group Members
    • Prof. Saibal Roy
    • Kankana Paul
    • Arindam Samanta
    • Kartik Sood
    • Alumni
  • Awards
    • News
    • Recent awards
    • Prof Saibal Roy INSA Chair Prof.
    • Previous Awards
  • Contact
  • Vacancies
  • Group Images
  1. Asymmetric ascending and descending loop shift exchange bias in Bi2Fe4O9-BiFeO3 nanocomposites; T Maity, S Roy; J. Magn. & Mag. Mat.; (2020) (In Press)
  2. Exploring ferroelectric and magnetic properties of Tb-substituted m = 5 layered Aurivillius phase thin films; A. Faraz, J. Ricote, R. Jimenez, T. Maity, M. Schmidt, N. Deepak, S. Roy, M. Pemble, L. Keeney; J. Appl. Phys; 123 (124101), 1-13; (2018)
  3. Crystallographic and magnetic investigations of textured bismuth ferrite lead titanate layers; M Palizdar, CM Fancher, D Mallick, T Maity, S Roy, JL Jones, TP Comyn, E Suvaci, AJ Bell; Mater. Res. Express, (2018)
  4. Tuneable magnetic dipoles controlling magnetic properties in ferromagnetic thin film; T Maity and S Roy; IEEE Magnetics Letters, 4105404, 8 (2017) 
  5. Observation of complete inversion of the hysteresis loop in a bimodal magnetic thin film; T Maity, D Kepaptsoglou, Q Ramasse and S Roy; Physical Review B - Rapid Communication, 95 (10), 100401 (2017) 
  6. Direct Visualization of Magnetic Field-Induced Magnetoelectric Switching in Multiferroic Aurivillius Phase Thin Films; Ahmad Faraz, Tuhin Maity, Michael Schmidt, Nitin Deepak, Saibal Roy, Martyn E. Pemble,  Roger W. Whatmore, Lynette Keeney; J Am Ceram Soc, 1-10, (2016)
  7. Reply to the comment on "Superspin Glass Mediated Giant Spontaneous Exchange Bias in BiFeO3-Bi2Fe4O9 Nanocomposite"; T Maity, S Goswami, D Bhattacharya, Saibal Roy;  Phys Rev Lett; 114, 099704 (2015)
  8. Origin of asymmetric exchange bias in Bi2Fe4O9- BiFeO3 nanocomposite; T Maity, S Goswami, D Bhattacharya, and Saibal Roy; Phys Rev B- Rapid Com, 89, 140411, (2014)
  9. Evidence of Magnetoelectric Coupling from Direct Electrical Measurements on Nanoscale BiFeO3; S Goswami, D Bhattacharya, L Keeney, T Maity, G C. Das, W Li, CZ. Gu, M.E. Pemble  and S Roy; Phys Rev B, 90, (10), 104402, (2014)
  10. Magnetic-Field-Induced Ferroelectric Switching in Multiferroic Aurivillius Phase Thin Films at Room Temperature;  L Keeney, T Maity, M Schmidt, A Amann, N Deepak, N Petkov, S Roy, M E. Pemble, R W. Whatmore; J Am Ceram Soc, 1-19, (2013). (Invited Feature Article).
  11. Tuneable superspin glass mediated giant spontaneous exchange bias in a nanocomposite of BiFeO3 - Bi2Fe4O9; Tuhin Maity, Sudipta Goswami, Dipten Bhattacharya, and Saibal Roy; Phys Rev Lett, 110, 107201, (2013)
  12. Spontaneous exchange bias in a nanocomposite of BiFeO3-Bi2Fe4O9; T Maity, S Goswami, D Bhattacharya, G C. Das and Saibal Roy; J Appl Phys; 113, 17D916, (2013)
  13. Room Temperature Electromechanical and Magnetic Investigations of Ferroelectric Aurivillius Phase Bi5Ti3(FexMn1-x)O15 (x = 1 and 0.7) Chemical Solution Deposited Thin Films; L Keeney, C Groh, S Kulkarni, S Roy, M Pemble and R Whatmore; J Appl Phys; 112, 024101, (2012).
  14. Crystallographic and Magnetic Identification of Secondary Phase in Orientated Bi5Fe0.5Co0.5Ti3O15 Ceramics; M Palizdar, T P. Comyn, M B. Ward, A P. Brown, J P. Harrington S Kulkarni, L Keeney S Roy, M Pemble, R Whatmore, C Quinne, S H. Kilcoyne, A J. Bell; J Appl Phys; 112, 073919, (2012)
  15. Room Temperature Ferroelectric and Magnetic Investigations and Detailed Phase Analysis of Aurivillius Phase Bi5Ti3Fe0.7Co0.3O15 Thin Films; L Keeney, S Kulkarni, N Deepak, M Schmidt, N Petkov, P F. Zhang, S Cavill, S Roy, M E. Pemble, R W. Whatmore; J Appl Phys; 112, 052010, (2012)

Polymer electronics – Nano electronics:
  1. Patterning submicrometer thick inorganic nanoparticle films by solution process and application for light trapping in solar cells; SP. Li, J. Xu, WS. Wang, I. Mathews,  D. O'Mahony, Y. Xu, and Saibal Roy; IEEE Trans on Nanotechnology, 13, 537, (2014)
  2. Electrical/optical dual-function redox potential transistor; Shunpu Li, Wensi Wang, Ju Xu, Daping Chu, Z. John  Sheng, Saibal Roy; Scientific Reports (Nature group of publications), 3, (2013) doi:10.1038/srep03391
  3. One step self-aligned multilayer patterning process for the fabrication of organic complementary circuits in combination with inkjet printing; Shunpu Li, Weining Chen, Daping Chu, and Saibal Roy; Organic  Electron., 13, 737-743, (2012)
  4. Self-Aligned High-Resolution Printed Polymer Transistors; Shunpu Li , Weining Chen , Daping Chu , and Saibal Roy; Adv. Mater., 23, 4107, (2011)

Magnetic Properties: Nanostructured materials & composites
  1. Asymmetric exchange bias loop shift in Ni-Ni(OH)2 core-shell nanoparticles; Tuhin Maity and Saibal Roy; Phys. Rev. Appl., (2017) (Under Review)
  2. Tuneable magnetic dipoles controlling magnetic properties in ferromagnetic thin film; T Maity, S Roy; IEEE Mag. Lett., 8, 1-4, (2017)
  3. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: magnetic studies and application; T Ghoshal, T Maity, R Senthamaraikannan, M.T. Shaw, P  Carolan, J D. Holmes, S Roy,  M A. Morris; Scientific Reports (Nature group of publications), 3, 2772, (2013) doi:10.1038/srep02772
  4. Erase/Restorable Asymmetric Magnetization Reversal in Polycrystalline Ferromagnetic Films; S. P. Li,  Santosh Kulkarni, and Saibal Roy; J. Appl  Phys, 112, 10, 103918, (2012)
  5. Large scale monodisperse hexagonal arrays of superparamagnetic
    iron oxides nanodots: a facile block copolymer inclusion method; T. Ghosal, T. Maity, J. F. Godsell, S Roy, M A Morris; Adv. Mater., 24, 2390-2397, (2012)
  6. Size-Tuneable Synthesis of Superparamagnetic Nickel Nanoparticles; K P. Donegan, J F. Godsell, D J. Otway, M A. Morris, S Roy, J D. Holmes; J Nanopart Res; 14, 670, (2012)
  7. An ac susceptibility study in capped Ni/Ni(OH)2 core–shell nanoassemblies: dual peak observations; J F. Godsell and Saibal Roy; J. Phys. D: Appl. Phys. 44, 325004, (2011)
  8. Microwave-assisted synthesis of icosahedral nickel nanocrystals; K. Donegan, J. Godsell, J. Tobin, J. O’Byrne, D. Otway, M. Morris, S. Roy and J. Holmes; Cryst Eng Comm, 13, 2023-2028, (2011)
  9. A new tetranuclear copper(II) complex with oximate bridges: Structure, magnetic properties and DFT study; S. Giri, D. Maity, J. F. Godsell, S. Roy, M. G.B. Drew, A. Ghosh, G. Mukhopadhyay, S. K. Saha; Inorganica Chimica Acta; 377, 99–104, (2011)
  10. Supercritical fluid synthesis of magnetic hexagonal nanoplatelets of magnetite; Zhonglai Li, Jeffrey F. Godsell, Justin P. O’Byrne, Nikolay Petkov, Michael A. Morris, Saibal Roy and Justin D. Holmes; J. Am. Chem. Soc. (JACS) Commun, 132, 36, pp 12540–12541, (2010).
  11. Magnetic properties of Ni nanoparticles on microporous silica spheres; J Godsell, K Donegan, J Tobin, M Copley, F Rhen, D Otway, M Morris, T O’Donnell, J Holmes, S Roy; J. Magn & Mag Mat, 322, 1269-1274, (2010)
  12. Synthesis and characterization of Cu(II) complexes of tetradentate and tridentate symmetrical Schiff base ligands involving o-phenelenediamine, salicylaldehyde and diacetylmonoxime; D. Maity, M. G. B. Drew, J. F. Godsell, S. Roy, G. Mukhopadhyay; Transition Met Chem; 35, 197, (2010) .
  13. Block copolymer mediated stabilization of sub-5 nm superparamagnetic nickel nanoparticles in an aqueous medium; T Bala, R Gunning, M Venkatesan, J F. Godsell, S. Roy, K M. Ryan; Nanotechnology, 20,  415603, (2009); 
  14. Effect of Magnetising field on the Martensitic Transformations in a Melt Spun NiMnGa alloy; A.K.Panda, S Singh, S.K.Das, A.Mitra, M. Koblischka, B. Jamieson and S. Roy; J Phys D: Appl Phys, 42, 245004,  (2009)
  15. Magnetic properties of nickel nanowires: Effect of deposition temperature; K. M. Razeeb, F. M. F Rhen, and S. Roy; J. Appl. Phys, 105, 1, 083922 (2009)
  16. Electroless deposition of thin film soft CoNiFe alloys from DMAB based solutions; J. Rohan, B. Ahern, K. Reynolds, S. Crowley, D Healy, F. Rhen, S. Roy; Electrochimica Acta, 54, 1851-1856, (2009)
  17. Coaxial metallic nanotubes in polycarbonate templates by electroless deposition; J F. Rohan, D P. Casey, B M. Ahern, F M.F. Rhen, S. Roy, D Fleming and S E. Lawrence; Electrochem Commun 10, 1419-1422, (2008)
  18. Effect of La doping on magnetotransport and magnetic properties of double perovskite Sr2FeMoO6 systems; G.N. Rao, S. Roy, C. Mou and J. W. Chen; J. Magn. & Mag. Mat. 299, 348 (2006).
  19. Interface controlled electrical & magnetic properties in Fe-Fe3O4-Silica nanocomposites; D.Das, S.Roy, J.Chen, D.Chakravorty. J. Appl. Phys, 91, 4573 (2002)
  20. Magnetic Nanocomposites; D. Chakravorty, S.Banerjee, M.Pal, P.Brahma, S.Roy, B.Roy and D.Das. Ind. J. Phys, 75th year special volume on materials physics. 43 (2002).
  21. Effect of quenching rate on the properties of melt-spun Fe-Nb-Cu-Si-B ribbons; A.Panda, S.Roy, S.R.Singh, V.Rao, S.Pramanik, I.Chattoraj, A.mitra, P.Ramachandrarao. Materials Science & Engineering A: 304 – 306, 457 (2001).  
  22. Magnetic properties of oxide-coated iron nanoparticles synthesized by electrodeposition; S.Banerjee, S.Roy, J.W.Chen & D.Chakravorty: J. Magn. & Mag. Mat. 219, 45 (2000).
  23. Magnetic properties of iron nano particles grown in a glass matrix; S. Roy, B. Roy, D. Chakravorty, J. Appl. Phys. 79, 1642 (1996).
  24. Magnetic properties of glass metal nanocomposites prepared by sol-gel route and hot pressing; S. Roy, D. Das, D. Chakravorty, D.C. Agrawal, J. Appl. Phys., 74, 4746 (1993).

Electrical Properties: Nanocomposites
  1. Improved electronic and magnetic properties of reduced graphene oxide films; R. McIntosh, M. Mamo, B. Jamieson, S. Roy, S. Bhattacharyya; Euro Phys Lett, 97, 38001, (2012) 
  2. Double peak behaviour of resistivity curves in Cd doped LaMnO3 perovskite; G.N Rao, S. Roy, R.C.Yang, J. W. Chen; J. Magn. & Mag. Mat. 260, 375 (2003).
  3. Alternating current electrical properties of polymeric graphite, carbon-black and carbon-fiber composites; T.A.Ezquerra, M.T.Connor, Saibal Roy, J.F.Nascimento, M.Kulescza, F.J.Balta-Calleja.  Composite Science & Technology, 61, 903, (2001).
  4. Broadband AC conductivity of conductor-polymer composites; M. Connor, S. Roy, T. Ezquerra, F. Calleja, Phys. Rev. B, 57, 2286 (1998).
  5. The development of nanosized particles in an ion-exchanged silicate glass matrix; B. Roy, S. Roy, H. Jain, D. Chakravorty, J. Non. Crys. Solids, 222, 102 (1997).
  6. Sol-gel synthesis of colloidal silica using cyclohexane; S. Roy, S. Bandhopadhyay, D. Chakravorty, J. Mat. Sc. Lett., 15, 1872 (1996).
  7. Low temperature electrical behaviour of nanocrystalline silver and copper grown in a glass ceramic; B. Roy, S. Roy, H. Jain, D. Chakravorty, J. Phys. Soc Japn., 64, 872 (1995).
  8. Electrical properties of sol-gel derived glass metal nanocomposites; S. Roy, D. Chakravorty, J. Phys.: Cond. Mat. 6, 8599 (1994).
  9. Electrical properties of glass metal nanocomposites synthesized by electrodeposition, ion exchange, reduction techniques; B.Roy, S.Roy, D.Chakravorty, J. Mater. Res., 9, 2677 (1994)
  10. Electrical conduction in composites of nanosized iron particles and oxide glasses; S. Roy, D. Chakravorty, J. Mater. Res., 9, 2314 (1994).
  11. Resistivity of ultrafine iron particles in a glass matrix; S. Roy, D. Chakravorty, Jpn. J. Appl. Phys., 32, 3515 (1993).
  12. Glass metal nanocomposites in bulk form by sol-gel route and hot pressing; S. Roy, A. Chaterjee, D. Chakravorty, J. Mater. Res., 8, 689 (1993).

Fractal growth of nanometals: Electrodeposition in glass and ceramics
​
  1. Fractal growth of copper in gel medium; S. Bandhopadhyay, S. Roy, D. Chakravorty, Solid State Com., 99, 835 (1996).
  2. Silver electrodeposites in ion exchanged oxide glasses; S. Roy, D. Chakravorty, Phys. Rev. B., 47, 3089 (1993).
  3. Nanocomposites by fractal growth of electrodeposited silver in ion exchanged oxide glasses; S. Roy, D. Chakravorty, Appl. Phys. Lett., 59, 1415 (1991).
  4. Electrical conductivity of ion exchanged oxide glasses containing aluminium dispersoids; P. Agarwal, S. Roy, D. Chakravorty, J. Mater. Sc., 26, 3643 (1991).
  5. Electrical conductivity of ion exchanged oxide glasses; A.K. Srivastava, S. Roy, D. Chakravorty, J. Mater. Sc., 25, 3236 (1990).
  6. Fast ion conduction in lithia containing glasses after ion exchange; D. Chakravorty, A. Kumar, S. Roy, J. Phys. D: Appl. Phys., 23, 429 (1990). 
Powered by Create your own unique website with customizable templates.