Welcome to Micropower Systems & Nanomagnetics Group
Micropower Systems & Nanomagnetics
  • About
  • Research
    • Micro Power generation
    • Power conversion for Microsystems
    • Nanostructured magnetic materials
  • Facilities
    • Sample Preparation
    • Structural Characterization Lab
    • Magnetic Characterization Lab
    • Vibration Energy Harvesting Setup
    • Tyndall Central Facility
    • Clean Room Facility
  • PUBLICATIONS
    • MEMS Vibrational Energy Harvesting
    • Power Supply on Chip
    • Materials Science
  • Group Members
    • Prof. Saibal Roy
    • Kankana Paul
    • Arindam Samanta
    • Kartik Sood
    • Alumni
  • Awards
    • News
    • Recent awards
    • Prof Saibal Roy INSA Chair Prof.
    • Previous Awards
  • Contact
  • Vacancies
  • Group Images
  1. Modeling and verification of nonlinear electromechanical coupling in micro-scale kinetic electromagnetic energy harvesters; A Sokolov, D Mallick, S Roy, M Kennedy, E Blokhina; IEEE Trans Circuits and Systems I, (2019) (In Press)
  2. MEMS based vibrational energy harvesting & conversion employing micro/nano-magnetics; S. Roy, D. Mallick, K. Paul; IEEE Trans. Mag, 55, 4700315, (2019). (Invited Article)
  3. Comparison of harmonic balance and multi-scale method in characterizing the response of monostable energy harvesters; Wei Wang, Junyi Cao, Dhiman Mallick, Saibal Roy; Jing Lin; Mechanical Systems and Signal Processing; 108, 252-261; (2018)
  4. Multi-frequency MEMS Electromagnetic Energy Harvesting; D. Mallick, P. Constantinou, P. Podder, S. Roy; Sensors & Actuators A: Physical; (2017)
  5. Magnetic Tuning of Nonlinear MEMS Electromagnetic Vibration Energy Harvester; Pranay Podder, Peter Constantinou, Dhiman Mallick, Andreas Amann and Saibal Roy; J. MEMS, 26, 539, (2017)
  6. Surfing the high energy output branch of nonlinear energy harvesters; Dhiman Mallick, Andreas Amann and Saibal Roy; Phys Rev Lett; 117, 197701, (2016)
  7. A 3D printed electromagnetic nonlinear vibration energy harvester; Peter Constantinou, Saibal Roy; Smart Mater & Struc; 25, 095053, (2016)
  8. Demonstration of combined bistable and monostable-quartic potential nonlinearity in an electromagnetic vibrational energy harvester; P. Podder, D. Mallick, A. Amann and S. Roy; Scientific Reports (Nature group of publications), 6, 37292, (2016)
  9. High figure of merit nonlinear micro-electromagnetic energy harvesters for wide band applications; D Mallick, A Amann and Saibal Roy; J. MEMS; 1, 99, (2016)
  10. Nonlinear energy harvesting using electromagnetic transduction for wider bandwidth; Saibal Roy, Pranay Podder, Dhiman Mallick; IEEE Magnetics Letters; 7, 5701004, (2016)
  11. FR4 based nonlinear electromagnetic vibration energy harvester for low frequency broadband operation - Combined effect of bistability and mechanical impact; P. Podder, A. Amann, S. Roy; IEEE Trans Mechatronics 21(2), 727-739, (2016)
  12. Interplay between electrical and mechanical domains in a high performance nonlinear energy harvester; Dhiman Mallick, Andreas Amann, and Saibal Roy; Smart Mat Struc (Fast Track Communication),  24,122001, (2015)
  13. A bistable electromagnetic micro-power generator using FR4-based folded arm cantilever; Pranay Podder, Andreas Amann, Saibal Roy; Sens & Act A: Physical; 227; 39-47; (2015)
  14. Bidirectional Electrical Tuning of FR4 based Electromagnetic Energy Harvesters; D Mallick, S Roy; Sensors & Actuators A: Physical; 226, 154-162, (2015)
  15. A nonlinear stretching based electromagnetic energy harvester on FR4 for wideband operation; D Mallick, A Amann, Saibal Roy; Smart Mat Struc, 24, 015013, 2014
  16. Deposition of thick Co-rich CoPtP films with high energy product for magnetic microelectromechanical applications; S. Kulkarni and S. Roy; J. Magn & Mag Mat, 322, 1592-1596, (2010)
  17. Self-powered autonomous wireless sensor node using vibration energy harvesting;  R. Torah, P. Glynne-Jones, M. Tudor, T. O’Donnell, S. Roy and S. Beeby; Meas. Sci. Technol. 19, 125202 (2008).
  18. Wireless sensor system powered by an electromagnetic vibration energy harvester; SP Beeby, RN Torah, MJ Tudor, T O'Donnell, S Roy; Measurement & Control;   41,  4, 109-113, (2008)
  19. Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator; S. Kulkarni, E. Koukharenko, R. Torah, J. Tudor, S. Beeby, T. O’Donnell, S. Roy. Sensors & Actuators A: Physical; 145-146, 336-342, (2008).
  20. Thermal diffusivity of Nonfractal and Fractal Ni Nanowires; KM Razeeb, S. Roy, J. Appl. Phys, 103, 084302, (2008).
  21. Thermal properties of single walled carbon nanotube-silicone nanocomposites; J. Xu, K. Razeeb, S. Roy; J. Polym. Sc. Part B: Polym Phy,  46, 1845-1852, (2008)
  22. A Micro electromagnetic generator for vibration energy harvesting; S P Beeby, M J Tudor, R N Torah, P Glynne-Jones, T O’Donnell, C R Saha and S Roy; J. Micromech. Mcroeng., 17, 1257-1265, (2007).
  23. Experimental comparison of macro and micro scale electromagnetic vibration powered generators: S.P.Beeby, M.J.Tudor, R. N. Torah, S. Roberts, T.O’Donnell, and S.Roy; Microsystem Technologies, 13, 1647-1653, (2007);
  24. Development of nano-structured, stress-free Co-rich CoPtP films for magnetic MEMS applications; S. Kulkarni, S. Roy. J. Appl. Phys, 101, 09K524, (2007)
  25. Vibration based electromagnetic micropower generator on Silicon; S. Kulkarni, S.Roy, T, O’Donnell, S. Beeby, J. Tudor. J. Appl. Phys, 99, 08P511, (2006).
  26. MEMS vibration powered Electromagnetic generator for wireless sensors applications. E. Koukharenko, S. P. Beeby, M. J. Tudor, N. M. White, T. O’Donnell, C. Saha, S. Kulkarni, S. Roy: Microsys. Technol. 12, 1071, (2006).
Powered by Create your own unique website with customizable templates.